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Abstract

The use of transformer-based models is growing rapidly throughout society. With this growth, it is
important to understand how they work, and in particular, how the attention mechanisms represent
concepts. Though there are many interpretability methods, many look at models through their neuronal
activations, which are poorly understood. We describe different lenses though which to view neuron
activations, and investigate the effectiveness in language models and vision transformers though various
methods of neural ablation: zero ablation, mean ablation, activation resampling, and a novel approach
we term ‘peak ablation’. Through experimental analysis, we find that in different regimes and models,
each method can offer the lowest degradation of model performance compared to other methods, with
resampling usually causing the most significant performance deterioration. We make our code available
at https://github.com/nickypro/investigating-ablation
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1. Introduction

Understanding how language models make decisions is important to ensure that their use
can be trusted. Mechanistic interpretability offers one lens through which to understand how
transformer architecture models [1] perform the computations required to get an output. An
oft-used tool in mechanistic interpretability is to attribute individual network parts to specific
capabilities by ablating those parts and observing capability degradation.

However, choosing how to ablate neurons in language models is still an unsolved problem.
The traditional closed-form methods are zero ablation and mean ablation [2, 3], as well as an
additional, more randomised method of activation resampling in the case of causal scrubbing
(3, 4], but little empirical analysis has been done to optimise these methods [4].

Understanding exactly how neuron activations deviate, and what baseline they deviate from, is
a broadly applicable question that is underexplored, and has the potential to improve techniques
for model pruning and analysis into model sparsity.

In this paper, we 1) describe a simplistic working model of neuron activations, 2) suggest an
improved, closed-form method of neuron ablation using modal activation, called ‘peak ablation’,
and 3) run experimental analysis on various ablation methods to compare the degree to which
they harm model performance.
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2. Related Work

Mechanistic interpretability is a field of research focusing on understanding how neural
network models achieve their outputs. [5, 3, 6, 7, 8, 9]. A common method used in mechanistic
interpretability, is ‘ablate and measure’ [3]. We investigate more precisely how different ablation
methods affect performance, and propose ‘peak ablation’ as another possible method.

Most relevantly, recent research [4] investigates hyperparameter selection to optimise activa-
tion patching for causal scrubbing. Our research differs; instead of interpolating activations
between similar inputs, we set neurons’ values for all inputs, and do not limit only to resampling.

Pruning: Model pruning [10] is a common practice wherein reduced neural network pa-
rameter counts lessen memory and performance costs. In particular, structured pruning of
large features [11] is interested in the removal on the scale of neurons and attention heads, and
can often achieve a large reduction in parameter count [12]. Our work seeks to question the
assumption of using masks that set neuron values to zero.

Modularity: Research into activation sparsity [13], modularity [14], mixture of experts
[15, 14, 16], and unlearning by pruning [17, 18] all investigate how different subsets of activations
are responsible for different tasks. These implicitly set activations to zero.

3. Method

3.1. Pre-Trained Models and Datasets

We work with two causal text models, Mistral 7B [19] and Meta’s OPT 1.3B [20], a masked text
model, RoBERTa Large [21], and a vision transformer, ViT Base Patch16 224 [22].

To get a general sense of performance, the above models were evaluated by looking at top1
prediction accuracy’, as well as cross-entropy loss on various datasets. For text models, we
assess on EleutherAI’s “The Pile’ [23]. For image models, we assess on Imagenet-1k [24], an
image dataset with 1000 different classes. We evaluate on deterministic subsets of 100,000 text
tokens and 1000 images respectively

3.2. Neurons

The objects of study are attention pre-out neurons, sometimes called ‘z’-hook activations. We
define attention pre-out neuron activations y; = f(z;) = preout(z;) asy; = >_; A; jWyz;,
where A; j = softmax((Wxw;) - (Wgx;)), where Wg, Wi, Wy are the attention query, key,
and value matrices respectively. We focus on attention neurons rather than MLP neurons, as
these do not have an activation function that privileges positive activations, making analysis
more difficult. To ablate a neuron, we replace y; = f(z;) with some constant.

In Figure 1, we showcase some plots of neuron probability distributions. We see an example
of many attention pre-out neuron activation distributions within the same layer. We note that
most neurons follow a roughly Gaussian or double-exponential distribution about zero, but
note that there is a minority of neurons that are not distributed at zero. As most neurons are
zero-centred and symmetric, it makes sense that zero and mean ablation work quite well.

'top1 token prediction accuracy for language models, top1 image classification accuracy for image models
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Figure 1: Un-normalised probability density functions (histograms) of attention neuron activations in
RoBERTa. We see in (left) an average of distributions of all neurons in a layer, (centre) a bi-modal neuron
with both peaks not at zero, and (right) another example of a neuron with an atypical distribution.
X-axis shows neuron value, and Y-axis shows probability of a neuron taking that value.
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3.3. A Working Model of Neuron Activation

Our hypothesis, based on activation profiles such as those seen in Figure 1 is that neurons have
a ‘baseline’ or ‘default-mode’ activation (typically at zero), when the input contains no relevant
features, which is then deviated from as neurons fire in proportion to various features they
are tuned to pick up. In residual stream models [25], information is limited to the width of the
residual stream [26], and as the residual stream typically grows exponentially in size [27], noise
can become amplified. This is supported by the common redundancy of many circuits [28],
even in transformer models trained without the use of dropout [29].

In particular, we expect that ablating neurons should have two contributors to reduced
performance. These are 1) removing the relevant contextual computed information that the
neuron is providing, and 2) taking the model activation out of distribution, by adding ‘noise’.
Ablating neurons to a constant value should cause some constant increase in loss for term 1, and
different constant should contribute to different values of term 2. As we increase the distance
from the ‘default-mode’ value, the neuron would further degrade the performance by taking
the residual stream further out of distribution, thus in some sense, ‘adding noise’.

3.4. Ablation Methods

We choose four main methods of ablating neurons, see Table 1 for a summary. These are:

Table 1
Comparison between the neural ablation methods described.
Method Set the neuron activation...
Zero Ablation ...to zero
Mean Ablation ...to the mean value within the dataset D
Activation Resampling ...to some values from some different input
Naive Peak Ablation ...to the modal ‘peak’ activation value within the dataset D

Zero ablation: The most common form of ablation, which involves replacing a neuronal
activation of any with a zeroed out activation. That is, setting Vz; : f;(x;) = 0.0



Mean Ablation: A still relatively-common method of ablation, which involves first collecting
activations of various neurons on a distribution of inputs, and averaging the activations to find
a mean activation. That is, for some dataset D, for z; € D, let fi(z;) = ﬁ > filz))

Activation Resampling: Inspired by [3, 4], we also try general neuron resampling, by
setting activations to those found by giving a randomised input. * For text model, we take
activations by a) sampling random generated characters, b) sampling random tokens, and c)
using OPT to generate a random text. For ViT, we use randomly generated pixel values.

Naive Peak Ablation: Observing that neuronal activations frequently exhibit a prominent
peak, we propose an ablation method targeting their modal activation. For bin size €, the neuron
i activations f;(z;) for each z; € D are sorted into bins N;[k] such that y;, < f;(x;) < yi + €.
The bin N;[kya.] with the highest occurrence is selected, and f;(x;) is set to Yy, ,,, + 5.

3.5. Ablation Experiments

Under the working model described in Section 3.3, we expect that ablating neurons to different
values should have different impacts to performance, with there being a value which leads to
some minimal drop in performance due to minimal noise being added to the residual stream.
We randomly select attention neurons in increments of 10% and ablate them until the model
is fully pruned, and at each step, assess performance by evaluating the Topl accuracy and
Cross-Entropy Loss in the chosen dataset with each ablation method, described in Table 1. The
neurons are selected deterministically across three separate seeds, summarised in Table 2

4. Results

4.1. Causal Text Models

In Figure 2, we see the results for random pruning of OPT 1.3b and Mistral 7b with the different
methods of ablation. We can see that Peak ablation has the most consistent pattern, causing the
lowest amount of degradation, with mean ablation and zero ablation coming a close second
and third, and Random resampling causes by far the most degradation. Of the three resampling
methods, choosing random tokens causes the lowest degradation.

4.2. Other Transformers

In Figure 3, we see that for ViT, zero, mean, and peak ablation have statistically insignificant
differences in performance, while resampling causes some small additional degradation. We
can see that almost all of the performance loss is based on the specific neurons being selected
rather than the ablation method being chosen, even between zero, mean, and peak ablation.
In RoBERTa, we see that in the first 75% of pruning, the three main methods of peak, mean and
zero ablation are very close, with Peak edging slightly better performance. Beyond 75%, the three
methods become more noisy; resampling of IDs ends up having the best performance overall in
both Top1 and Cross-Entropy Loss at the task of token unmasking and de-randomization.

*This differs slightly to the original description, as in other research, they use a specific task, like circuit analysis [3]
for the activation resampling, where the specific prompt template already exists.
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Figure 2: Change in Top1 next-token prediction accuracy (Top1) and cross-entropy loss (CE Loss) at
different fractions of model pruned with different methods of ablation for Mistral 7B and OPT 1.3B
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Figure 3: Change in Top1 next-token prediction accuracy (Top1) and cross-entropy loss (CE Loss) at
different fractions of model pruned with different methods of ablation for ViT 7B and RoBERTa

4.3. Overall Comparison

In Table 2, we see that in different models and in different regimes, the different methods have
different merits in reducing performance, with Peak ablation working overall best in the most
cases. Surprisingly, although Random resampling seems to add a lot of noise to the activations,
random token ID resampling can sometimes work well, such as in RoBERTa.

5. Discussion

The analysis presented seems to suggest that when evaluating and understanding neurons in
the attention layers of language models, the ideal centring method seems to depend significantly
on the model. In decoder models, a good method is to find the largest peak, with a close second
being zero ablation. This similarity is expected, as most neurons are centred at zero. This has
downstream effects on improving the way we can look at one of the most crucial aspects of
how neural networks work - their activations.

We have seen that neurons can have activations that are: non-Gaussian, non-symmetric,
multi-modal, non-zero-centred. We hypothesise that taking into consideration this fact has the
potential to make interpretability analysis into more fruitful, and centring activations by their
peak seems a potential natural method.

Future work could: 1) investigate other potential better methods for neuron recentring, 2)



Table 2

Performance impact of neural ablation methods on the attention neurons of OPT, Mistral, ViT and
RoBERTa. Ablation methods are Peak, Mean and Zero ablation, as well as Resampling (RS) with random
characters (RS1), token IDs (RS2) and generated text (RS3) for text models, and random pixels (RS1) for

ViT. Models are pruned by randomly selecting 50% and 90% of neurons

Top1 Accuracy ‘ OPT Mistral ViT RoBERTa
Baseline ‘ 95.06 £0.00  60.05£0.00 80.32+0.00 73.04+0.00
Peak | 44.54+0.19 51.30+£0.05 47.72+3.58 52.55+1.27

Mean 4239+£1.84 49.71+0.70 48.65=+5.38 51.10+1.41

50 % Zero 4177 £2.76  48.03£0.50 48.65+2.54  48.69+3.75
Pruning RS1 25697+£224 2701£1.12 3929+184 18.57+0.93
RS2 27.51£1.02 26.10+1.34 - 2483+1.84

RS3 29.90£1.65 17.93£0.33 - 16.10£1.12

Peak 12.81+0.29 11.70+0.26 0.20 £ 0.00 6.37 £ 0.62

Mean 12.59£0.39  10.84 £0.32 0.17+£0.17  10.46 £0.22

90% Zero 11.05 £ 0.53 9.53+034 0.50+0.37 11.20+0.60
Pruning RS1 6.18 £0.43 1.03+0.12 0.37+£0.39 3.19 £0.33
RS2 7.35 +£0.46 7.41+£0.25 - 7.55 £ 0.06

RS3 5.55 £0.17 4.11+£0.09 - 2.26 £0.18
Cross-Entopy Loss ‘ OPT Mistral ViT RoBERTa
Baseline ‘ 2.24+0.00 1.89 £0.00 0.77 £ 0.00 3.75+£0.00
Peak 2.93+£0.01 235+008 252+023 5.00£0.09

Mean 3.09+0.14 2.43+007 2.47+0.33 5.19 £0.03

50% Zero 3.19+0.24 249+006 2.46+0.17 5.33 £0.33
Pruning RS1 4.53 £0.20 4.52 £ 0.16 3.224+0.16 8.68 +0.22
RS2 4.89+0.13 4.71+£0.15 - 7.85+0.18

RS3 4.26 +0.16 5.88 £0.10 - 10.09+£0.20

Peak 6.33+£004 6.45=+0.03 7.10+£0.06 13.53+0.81

Mean 6.35+0.06 6.87 £0.12 7.07+£0.04 13.31+0.60

90% Zero 6.90 +0.10 6.75+0.04 6.99+0.04 12.99+0.54
Pruning RS1 8.40+0.15 12.71+0.18 7.13+£0.03  14.37£0.06
RS2 7.80 £0.11 7.25+0.03 - 11.32+0.09

RS3 8.67+0.09  10.80£0.08 - 20.85£0.19

more thoroughly investigate the differences between ‘well-behaved’ symmetric zero-centred
distributions, and those that deviate from this norm, 3) find more efficient ways of computing

the peak activations for larger models.
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